21. Fachgespräch der EEG-Clearingstelle - Speicherbetrieb unter dem EEG 2014

»Energiespeicher: Technologien, systemischer Bedarf, Anwendungen sowie Markt und Hemmnisse«

Prof. Dr. Christian Doetsch Fraunhofer UMSICHT

Berlin, Montag, 8. Juni 2015

Share of installed electricity generation in Germany and other OECD countries – and their development

- Germany, 2013:25% renewable energy
- But this means:
 85 GW renewable capacity
 90 GW conventional capacity approx.
 50% share
- Future: Renewables will increase rapidly, nuclear energy will fade out
- Increasing demand for energy balancing measurements

Source: Fraunhofer UMSICHT

Peak RE share 2014, Germany: 80% Renewable Energies

(Saturday, May 11, 2014)

 Surplus of energy leads to negative day-ahead prices

Source: AGORA, "Die Energiewende im Stromsektor: Stand der Dinge 2014", 2015

System integration: Electric energy balancing options

System integration: Electric energy balancing options

Add. generation (e.g. gas turbine)

Additive Generation

rare short-term peak loads

Virtual power plant

Dispatchable Generation

frequent and high short-term peak loads

Energy Storage

Energy Storage

daily balancing of power demand and generation

Demand side management

Dispatchable Load

frequent and high short-term generation peaks

Additional load (Power-to-X)

Additive Load

rare generation peaks

System integration: A functional electric energy storage

Fig: © FFE , https://www.ffe.de/publikationen/fachartikel/417-funktionale-stromspeicher

Energy Storage Technologies for system integration

Electric energy storages

Discharge Time at Rated Power

Batteries

- ► lead acid
- ▶ lithium-ion
- redox-flow

Mechanical storages

- CAES
- pumped hydro

Energy Storage Technologies for system integration

Where (grid-level) could this systems be located?

- central electric storages
 - pumped hydro
 - hydrogen generation
 - compressed air energy storage
- decentralized huge batteries
 - lithium-ion batteries
 - lead acid batteries
 - NaS batteries
 - Redox-Flow batteries
- local batteries
 - lithium-ion batteries
 - lead acid batteries
- virtual storages
 - HP + thermal storage
 - μCHP + thermal storage

Prediction: Surplus vs. lack of energy

sorted annual curve

2030

- Surplus:
 - approx. 2500 h/a
 - approx. 28 TWh
- Lack:
 - approx. 300 h/a
 - approx. 1 TWh

mismatch

2050

- Surplus:
 - approx. 5000 h/a
 - approx. 80 TWh
- Lack:
 - approx. 300 h/a
 - approx. 3.3 TWh

Development of Renewable Energy Share

(Process) Heat / Electricity / Mobility

 $Source: \ FFE, BMWI, in \ ENERGY \ 2.0; \ http://www.energy20.net/media/energy20/energ2.0 week.html$

Power-to-X: "You are leaving the electrical sector"

Power-to-heat

Potential

- Private heat demand about 650TWh
- Domestic hot water >3 TWh/month

Technology

- State-of-the-art technology
- low-cost, high flexibility, 100% efficiency

Economic assessment

- Only 1/3 of total cost (household) are generation cost
- Business case for decentral application?
- Business case for central (district heating) application ?

Durchschnittliche Strompreiszusammensetzung 2013			
	Prozentualer Anteil	Anteil für Privatkunden	
Stromerzeugung	32,3%	8,85 ct/kWh	Markt
Netznutzung	18,8%	5,15 ct/kWh	
§19 Umlage	0,5%	0,15 ct/kWh	Regulatorischer Anteil
Mehrwertsteuer	15,0%	4,12 ct/kWh	
Konzessionsabgabe	6,6%	1,80 ct/kWh	
Öko-/Stromsteuer	7,5%	2,06 ct/kWh	
EEG-Umlage	19,3%	5,28 ct/kWh	

Quelle: BDEW

"Power 2 Heat" ist aufgrund der Höhe des Strompreises aktuell wirtschaftlich nicht darstellbar.

© MVV, Daten BDEW

Power-to-X: "You are leaving the electrical sector"

Power-to-gas / Power-to-product

Power-to-gas

- available technology
- high-cost, efficiency approx. 55 %, less flexible (e.g. Hydrogenics / EON
 Falkenhagen)

http://www.hydrogenics.com/about-the-company/news-updates/2013/08/29/e.on-and-swissgas-begin-commercial-operations-at-power-to-gas-facility-in-germany-using-hydrogenics-technology

Power-to-product (liquid, chemistry, ...)

- Research and development e.g. acetylene, formic acid, high pressure direct methanol
- very high cost, efficiency?

Expansion Potential of Energy Storage

Very heterogeneous results (capacity)

Expansion Potential of Energy Storage

- Very heterogeneous results (capacity and technical solutions)
- Expansion of storage capacity expected from 2025 due to less conventional power plants and increasing share of renewables.

Investment Costs – Example PHES

Economic Efficiency of Energy Storage – Cluster Overview

Economic Efficiency of Energy Storage – Cluster Overview

PHES = Pumped Hydro Energy Storage, A/DCAES = Adiabatic/Diabatic Compressed Air Energy Storage, RFB = Redox-Flow-Battery, PHEV = Plug-in-Hybrid-Vehicle, LA= Lead Acid battery

Slide 21

Economic Efficiency of Energy Storage

- Most of the studies calculate the economic efficiency based on historical time series.
- Approx. one third delivers forecasts for future years.

Economic Efficiency of Energy Storage – Cluster 1

Spot market trading of large-scale storage

PHES = Pumped Hydro Energy Storage, A/DCAES = Adiabatic/Diabatic Compressed Air Energy Storage, ID = intraday spot market, DA =DayAhead spot market

Economic Efficiency of Energy Storage – Cluster 2a

Provision of balancing power by large-scale storages

PHES = Pumped Hydro Energy Storage, A/DCAES = Adiabatic/Diabatic Compressed Air Energy Storage, DA =DayAhead spot market, SC = secondary control, MR = minutes reserve

Economic Efficiency of Energy Storage – Cluster 2b/2c

- Provision of balancing power by stationary batteries
- Provision of balancing power by mobile batteries (PHEV) (only two sources in total stating economic efficiency)

RFB = Redox-Flow-Battery, LA = Lead Acid battery, DA = DayAhead spot market, SC = secondary control, MR = minutes reserve, PC = primary control

Exemplary Results of the Metastudy Energy Storage Economic Efficiency of Energy Storage – Cluster 3

Increase of PV-self-consumption by small-scale batteries

Economic Efficiency of Energy Storage – Conclusion

- Only few studies on primary control, but consistently showing economic efficiency for batteries providing primary control.
- For mobile batteries economic efficiency can be reached with primary control, secondary control (negative) as well as minutes reserve (negative).
- In the future, the combination of PV-selfconsumption and smallscale batteries could be economically feasible.

- In the past, the combination of large-scale storage and secondary control (negative) could be economically operated.
- Due to lack of data predictions on the future economic efficiency of all other applications are difficult to be derived.

PHES = Pumped Hydro Energy Storage, ACAES = Adiabatic/Diabatic Compressed Air Energy Storage, PHEV = Plug-in-Hybrid-Vehicle, LA= Lead Acid battery, PC = primary control, DA =DayAhead spot market, SC = secondary control, MR = minutes reserve, CCS = Charging Current Substitution, PV-SelfC = PV-Self-Consumption

Impact of Energy Storage on the Energy Market

Impact of Energy Storage on the Energy Market

Impact of Energy Storage on the Energy Market - Conclusion

- Main effect: smoothing of market price due to load shifting operation
- Price spread is reduced on average by 0.5-1.7 €/MWh per GWh storage capacity (median: -0.7 (€/MWh)/GWh_{inst}).
- Reduction is strongly depending on the chosen time series and not linear but reaching a threshold.

Summary / Conclusion

- Energy balancing demand is driven by high share of variable renewable energies
- There is a bunch of different electric energy storage applications with individual advantages and disadvantages (PHES, CAES, Batteries etc.)
- CAPEX are mostly high (but PHES), but decreasing due to development
- There are more balancing / flexibility opportunities: e.g. "functional energy storages" like Demand-Side-Management, virtual power plants etc.
- Future energy balancing ("storage") demand depends on both economic / technical framework and balancing options/technologies
- Currently there are no/less market driven energy storage business cases, but in the near future the self consumption of electricity from PV (<10kW)

Conclusion

"Storage" demand is forecasted, business cases are not existing=> market design has to be improved

Metastudy Energy Storage (2015)

- Published by Fraunhofer UMSICHT and Fraunhofer IWES, 2015, May
- Funded by BMWi
- More than 800 sources to 20 key questions in 7 work packages were investigated
- Approx. 400 studies were evaluated
- 271 pages
- Free download available (PDF)
- Summary (Short version) will be available soon

www.umsicht.fraunhofer.de/de/presse-medien/2015/metastudie-energiespeicher.html

Study on behalf of the Federal Ministry of Economics and Energy (BMWi) Prof. Dr.-Ing. Christian Doetsch Tel.: +49 208 8598 1195 christian.doetsch@umsicht.fraunhofer.de www.umsicht.fraunhofer.de

